Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 25(1): 12, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438989

RESUMO

BACKGROUND: Mutations in the gene DISC1 are associated with increased risk for schizophrenia, bipolar disorder and major depression. The study of mutated DISC1 represents a well-known and comprehensively characterized approach to understand neuropsychiatric disease mechanisms. However, previous studies have mainly used animal models or rather heterogeneous populations of iPSC-derived neurons, generated by undirected differentiation, to study the effects of DISC1 disruption. Since major hypotheses to explain neurodevelopmental, psychiatric disorders rely on altered neuronal connectivity observed in patients, an ideal iPSC-based model requires accurate representation of the structure and complexity of neuronal circuitries. In this study, we made use of an isogenic cell line with a mutation in DISC1 to study neuronal synaptic phenotypes in a culture system comprising a defined ratio of NGN2 and ASCL1/DLX2 (AD2)-transduced neurons, enriched for glutamatergic and GABAergic neurons, respectively, to mimic properties of the cortical microcircuitry. RESULTS: In heterozygous DISC1 mutant neurons, we replicated the expected phenotypes including altered neural progenitor proliferation as well as neurite outgrowth, deregulated DISC1-associated signaling pathways, and reduced synaptic densities in cultures composed of glutamatergic neurons. Cultures comprising a defined ratio of NGN2 and AD2 neurons then revealed considerably increased GABAergic synapse densities, which have not been observed in any iPSC-derived model so far. Increased inhibitory synapse densities could be associated with an increased efficiency of GABAergic differentiation, which we observed in AD2-transduced cultures of mutant neurons. Additionally, we found increased neuronal activity in GABAergic neurons through calcium imaging while the activity pattern of glutamatergic neurons remained unchanged. CONCLUSIONS: In conclusion, our results demonstrate phenotypic differences in a co-culture comprising a defined ratio of DISC1 mutant NGN2 and AD2 neurons, as compared to culture models comprising only one neuronal cell type. Altered synapse numbers and neuronal activity imply that DISC1 impacts the excitatory/inhibitory balance in NGN2/AD2 co-cultures, mainly through increased GABAergic input.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Animais , Humanos , Técnicas de Cocultura , Neurônios GABAérgicos , Mutação , Proteínas do Tecido Nervoso/genética
2.
Commun Biol ; 6(1): 472, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37117634

RESUMO

The examination of post-mortem brain tissue suggests synaptic loss as a central pathological hallmark of schizophrenia spectrum (SCZ), which is potentially related to activated microglia and increased inflammation. Induced pluripotent stem cells serve as a source for neurons and microglia-like cells to address neuron-microglia interactions. Here, we present a co-culture model of neurons and microglia, both of human origin, to show increased susceptibility of neurons to microglia-like cells derived from SCZ patients. Analysis of IBA-1 expression, NFκB signaling, transcription of inflammasome-related genes, and caspase-1 activation shows that enhanced, intrinsic inflammasome activation in patient-derived microglia exacerbates neuronal deficits such as synaptic loss in SCZ. Anti-inflammatory pretreatment of microglia with minocycline specifically rescued aberrant synapse loss in SCZ and reduced microglial activation. These findings open up possibilities for further research in larger cohorts, focused clinical work and longitudinal studies that could facilitate earlier therapeutic intervention.


Assuntos
Microglia , Esquizofrenia , Humanos , Microglia/metabolismo , Esquizofrenia/metabolismo , Inflamassomos/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Neurônios/metabolismo
3.
Stem Cell Res ; 64: 102925, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36154917

RESUMO

DISC1 is a scaffold protein involved in key developmental processes such as neuronal migration, differentiation and neurogenesis. Genetic variants of the DISC1 gene have been linked to neuropsychiatric disorders like schizophrenia, bipolar disorder and major depression. Here, we generated two isogenic iPSC lines carrying mutations in DISC1 exon 2 using CRISPR/Cas9 gene editing. Both lines express pluripotency markers, can be differentiated into the three germ layers and present a normal karyotype. The generated iPSC lines can be used to study the implications of DISC1 mutations in the context of neuropsychiatric diseases in vitro.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Mutação , Éxons/genética
4.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638595

RESUMO

Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Transtornos Mentais/terapia , Neuroglia/citologia , Animais , Astrócitos/citologia , Sistema Nervoso Central/citologia , Desenvolvimento de Medicamentos/métodos , Humanos , Inflamação/patologia , Microglia/citologia , Neurônios/citologia , Qualidade de Vida
5.
Front Immunol ; 12: 701093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552584

RESUMO

Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Evasão da Resposta Imune/imunologia , Neutrófilos/imunologia , Staphylococcus aureus/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Serina Proteases/imunologia , Serina Proteases/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/imunologia
6.
Stem Cell Res ; 54: 102427, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34139596

RESUMO

Peripheral-blood derived CD34+ hematopoietic stem and progenitor cells were isolated from a 49-year old male donor and were successfully reprogrammed into human induced pluripotent stem cells (hiPSCs) using integration-free episomal vectors. The hiPSC line exhibited a typical stem cell-like morphology and endogenously expressed several pluripotency markers by concomitant loss of exogenous reprogramming vectors. Genomic integrity was confirmed by microarray-based comparative genomic hybridization (array CGH). Further analysis affirmed the ability of this hiPSC line to differentiate into all three germ layers. Thus, the reported cell line may serve as a healthy control for disease modeling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular , Hibridização Genômica Comparativa , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...